Interpretable Semi-Mechanistic Fuzzy Models by Clustering, OLS and FIS Model Reduction

نویسندگان

  • Janos Abonyi
  • Hans Roubos
  • Robert Babuska
  • Ferenc Szeifert
چکیده

A semi-mechanistic fuzzy modeling technique is proposed to obtain compact and transparent process models based on small data-sets. Semi-mechanistic models are hybrid models that consist of a white box structure based on mechanistic relationships and black-box substructures to model less defined parts. First, it is shown that certain type of white-box models can be efficiently incorporated into a Takagi-Sugeno fuzzy rule structure. Next, the proposed models are identified from learning data and special attention is paid to transparency and accuracy aspects. The approach is based on a combination of (i) prior knowledge-based model structures, (ii) fuzzy clustering, (iii) orthogonal least-squares, and (iv) the modified Fisher’s interclass separability method. For the identification of the semimechanistic fuzzy model, a new fuzzy clustering method is proposed, i.e., clustering is achieved by the simultaneous identification of fuzzy sets defined on some of the scheduling variables and identification of the parameters of the local semimechanistic submodels. Subsequently, model reduction is applied to make the TS models as compact as possible, i.e., the most relevant consequent variables are selected by an orthogonal least squares method, and the modified Fisher’s interclass separability criteria is used for selection of relevant antecedent (scheduling) variables. The overall procedure is demonstrated by the development of a semimechanistic model for a biochemical process. Although the results do not carry over directly to other engineering fields, the main ideas and conclusions, will certainly hold for other application areas as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact TS - Fuzzy Models Through Clustering and OLS Plus FIS Model Reduction

The identification of uncertain and nonlinear systems is an important and challenging problem. Fuzzy logic models are often a good choice to describe such systems, however in many cases these become complex soon. Generally, too less effort is put into variable selection and in the creation of suitable local rules. Moreover, in general no model reduction is applied, while this may simplify the m...

متن کامل

Non linear Prediction of Antitubercular Activity Of Oxazolines and Oxazoles derivatives Making Use of Compact TS-Fuzzy models Through Clustering with orthogonal least sqaure technique and Fuzzy identification system

The prediction of uncertain and predictive nonlinear systems is an important and challenging problem. Fuzzy logic models are often a good choice to describe such systems, however in many cases these become complex soon. commonlly, too less effort is put into descriptor selection and in the creation of suitable local rules. Moreover, in common no model reduction is applied, while this may analyz...

متن کامل

Interpretable support vector regression

This paper deals with transforming Support vector regression (SVR) models into fuzzy systems (FIS). It is highlighted that trained support vector based models can be used for the construction of fuzzy rule-based regression models. However, the transformed support vector model does not automatically result in an interpretable fuzzy model. Training of a support vector model results a complex rule...

متن کامل

A NOTE TO INTERPRETABLE FUZZY MODELS AND THEIR LEARNING

In this paper we turn the attention to a well developed theory of fuzzy/lin-guis-tic models that are interpretable and, moreover, can be learned from the data.We present four different situations demonstrating both interpretability as well as learning abilities of these models.

متن کامل

Constructing Interpretable Fuzzy Model Based on Reduction Methodology

A systematic approach for constructing interpretable fuzzy model based on reduction methodology is proposed. Fuzzy clustering algorithm, combined with least square method, is used to identify initial fuzzy model with overestimated rule number. Orthogonal least square algorithm and similar fuzzy sets merging are then applied to remove redundancy of the fuzzy model. In order to obtain high accura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002